Abstract
Iridium-based materials are considered as state-of-the-art electrocatalysts for oxygen evolution reaction (OER), however, their stability and catalytic activity greatly depend on surface-state changes induced by electrochemical cycling. To better understand the behavior of the low-index Ir surfaces in an electrochemical environment, we perform a systematic thermodynamic analysis by means of the density functional theory (DFT) calculations. On the basis of computed surface energies of the Ir (111), (110) and (100) facets as a function of applied electrode potential and coverage of adsorbed water species we determine stability maps and predict equilibrium shapes of Ir nanoparticles. Our calculations also show that metastable oxide precursors formed at the initial stages of Ir surface oxidation are responsible for enhanced catalytic activity toward OER as compared to metal surfaces covered by oxygen adsorbates and thick-oxide films. Such enhancement occurs not only due to the modified thermodynamic stability...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.