Abstract

At the cell voltages required to reach technologically viable current densities in proton-exchange membrane (PEM) electrolyzers, IrO2 catalysts are suspected to undergo a transformation to an amorphous hydrous form. Here, we present a systematic ab initio thermodynamics study analyzing the shape and stability of IrO2 nanoparticles in this potential range. Our results confirm a thermodynamic instability of the rutile crystal structure induced by the stabilization of highly oxidized O species at the surface already at onset potentials for the oxygen evolution reaction (OER). Intriguingly, this is preceded by a transformation of the equilibrium shape at even lower potentials. Instead of the well-studied IrO2(110) facets, this shape is dominated by IrO2(111) facets that have hitherto barely received attention. Our findings highlight the need to extend detailed characterization studies to this high-potential range, not the least to establish more suitable active-site models for the OER that may then serve as t...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.