Abstract
AbstractThe paper reviews an ab initio two‐step procedure to determine thermodynamic properties of itinerant magnets. In the first step, the selfconsistent electronic structure of a system is calculated using the tight‐binding linear muffin‐tin orbital method combined with Green function techniques. In the second step, the parameters of the effective classical Heisenberg Hamiltonian are determined using the magnetic force theorem and they are employed in subsequent evaluation of magnon spectra, the spin‐wave stiffness constants and the Curie/Néel temperatures. Applicability of the developed scheme is illustrated by investigations of selected properties of 3d metals Fe, Co, and Ni, diluted magnetic semiconductors (Ga,Mn)As, and 4f metals Gd and Eu.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.