Abstract
The quantum mechanical model of deformable and polarizable atoms has been developed for the research of the elastic properties of rare-gas crystals Ne, Ar, Kr, and Xe over a wide range of pressure. It is shown that it is impossible to reproduce the observed deviation from the Cauchy relation δ(p) for Ne, Kr, Xe adequately taking into account the many-body interaction only. The individual dependence δ(p) for each of the crystals is the result of two competing interactions, namely, the many-body interaction and the electron-phonon interaction, which manifests itself in a quadrupole deformation of atoms electron shells due to displacements of the nuclei. The contributions of these interactions to Ne, Kr, and Xe compensated each other with high precision that provides δ with a positive value which is weakly dependent on pressure. In case of Ar the many-body interaction prevails. The compressed Ar has a negative deviation from the Cauchy relation the absolute value of which increases with the rise of pressure. The consideration of the quadrupole deformation is of great importance for heavy rare-gas crystals Kr and Xe. The represented ab initio calculated dependences of Birch elastic moduli Bij(p) and δ(p) are in good agreement with the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Manipulative and Physiological Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.