Abstract

A mechanism for the reaction of the NO(3) radical with the simplest alkene, ethene, is proposed. The mechanism involves three paths leading to three main different products: oxirane, ethanal, and nitric acid. The three paths start from the same initial intermediate, an NO(3)-ethene adduct. The calculated energy barriers show that the oxirane is the product kinetically more favored. Initial analysis of the potential energy surface was made at AM1 level. Then, the geometries and characterization of the found stationary points on the surface were refined at ROHF level with a 6-31G basis set. Further refinement was carried out at CASSCF level with the same basis set, and an active space was built with five active electrons in six active orbitals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.