Abstract
The mechanism of the cycloaddition reaction between singlet H2Si=Si: and formaldehyde has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it could be predicted that the reaction has three competitive dominant reaction pathways. The reaction rules presented is that the 3p unoccupied orbital of the Si: atom in H2Si=Si: inserts the π orbital of formaldehyde from the oxygen side, resulting in the formation of an intermediate. Isomerization of the intermediate further generates a four-membered ring silylene (the H2Si–O in the opposite position). In addition, the [2+2] cycloaddition reaction of the two π-bonds in H2Si=Si: and formaldehyde also generates another four-membered ring silylene (the H2Si–O in the syn-position). Because of the unsaturated property of the Si: atom in the two four-membered ring silylenes, the two four-membered ring silylenes could further react with formaldehyde, generating two silicic bis-heterocyclic compounds. Simultaneously, the ring strain of the four-membered ring silylene (the H2Si–O in the syn-position) makes it isomerize to a twisted four-membered ring product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.