Abstract

Kinetics of the hydrogen abstraction reaction class of the H+alkene has been studied using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. The rate constants for the reference reaction, H+C2H4, were obtained by the canonical variational transition state theory (CVT) with the small curvature tunneling (SCT) correction in the temperature range of 300-3000 K. Combined with these data, both the RC-TST/LER, where only reaction energy is needed, and RC-TST/BHG, where no other information is needed, are found to be promising methods for predicting rate constants for a large number of reactions in this reaction class. Our analysis indicates that less than 50% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method while in comparison to explicit rate calculations the differences are less than 100% or a factor of 2 on the average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.