Abstract

The interactions of Na+ and Cu+ cations with a Cu(111) surface in the presence and absence of water molecules were investigated using cluster models and ab initio methods. Adsorption in aqueous solution was modeled with one to five water molecules around the adsorbing cation. The Cu surface was described with Cu10 and Cu18 cluster models and the computational method was MP2/RECP/6-31+G. The effect of the basis set superposition error (BSSE) was taken into account with counterpoise (CP) correction, and the accuracy of HF-level results was examined. The interactions between Na+ and the Cu surface were found to be primarily electrostatic, and the energy differences among the different adsorption sites were small. The largest CP-corrected MP2 adsorption energy for the Cu18 cluster was -188 kJ/mol. When water molecules were added around it, Na+ receded from the Cu surface and finally was surrounded totally by the water molecules. The interactions between Cu+ and the Cu surface were dominated by orbital interactions, and Cu+ preferred to adsorb on sites where it could bind to more than one surface atom. The largest CP-corrected MP2 adsorption energy for the Cu18 cluster was -447 kJ/mol. Adding water molecules around it did not cause Cu+ to draw away from the surface, but instead the water molecules began to form hydrogen bonds with one another. The magnitude of BSSE was substantial in most cases. CP corrections did not, however, have a significant impact on the relative trends among the interaction energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.