Abstract

The structural, mechanical, thermodynamic, and electronic properties calculated by projector-augmented wave method are presented for BeCN 2 in chalcopyrite and wurtzite-like structures. The calculated high bulk modulus (321 and 309 GPa) and large shear modulus (302 and 298 GPa) suggest that they are ultra-incompressible and hard materials. The ultra-incompressibility is attributed to a stacking of strongly three-dimensional covalent bonded CN 4 and BeN 4 tetrahedrons connected by corners. Thermodynamic study demonstrates that these two structures can be synthesized at ambient condition. Furthermore, the structural transformation from the wurtzite-like to the chalcopyrite phase was predicted at about 17 GPa according to the enthalpy difference calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.