Abstract

An ab initio model is developed for calculating the approximate electronic structure of local excited states in alkali metals and alloys. Core excitations of Na and K metals are calculated along with core impurity excitations of K in Li and Rb in Li. Unrestricted Hartree-Fock method is used in conjunction with pseudopotentials, cluster theory, and Rayleigh-Schr\"odinger many-body perturbation theory to yield a spectroscopic accuracy of 0.1 eV when compared to experiment. Local resonance states below the interband threshold are found in the (n-1)${p}^{5}$${s}^{2}$ excited configurations in Na and K metals. Similar states are not found for the analogous excited configurations in dilute alloys of K in Li and Rb in Li. These results suggest that electron-hole pair interactions dominate the x-ray absorption process in pure alkali metals. Results are contrasted with current models for the enhancement of x-ray absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.