Abstract

The structural, elastic, electronic and phonon properties of HfX (X = Rh, Ru and Tc) in the caesium-chloride phase have been investigated using the density functional theory within the generalized gradient approximation. The optimized lattice constant (a0), bulk modulus (B) and the elastic constants (Cij) are evaluated. The results are in a good agreement with the available experimental and theoretical data in the literature. Electronic band structures and densities of states have been derived for these compounds. The present band structure calculations indicate that the phases of caesium-chloride HfX (X = Rh, Ru and Tc) compounds are metals. Phonon dispersion curves and their corresponding total and projected density of states have been obtained using the direct method. The phonon spectra suggest that these compounds are dynamically stable in the caesium-chloride phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.