Abstract

The Re1−xWx alloy is formed by continuous neutron bombardment of W, the core material making up the shield in fusion devices. Here, we present an ab initio study of the lattice dynamical properties of this commercially important alloy. The dynamical (force constant) matrix was obtained through a first-principles, density functional perturbation theory. Various vibrational properties, such as fuzzy phonon dispersion relations, density of states (DOS), scattering life-times, vibrational entropy and specific heat are studied. The effects of short-range ordering is shown to be important in the 50–50 alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.