Abstract

The low-lying electronic states of Ag3−(1Σg+,3B2), Ag3(2B2,2A1,2B1,4B2,2Σu+,1 2Σg+,2 2Σg+,2Πu,4Σu+), and Ag3+(1A1,1Σg+,3Σu+,3A1) are studied by ab initio calculations with the Stuttgart effective core potentials and corresponding (8s7p6d)/[6s5p3d] and (8s7p5d3f )/[6s5p3d3f] basis sets. The geometries, vibrational frequencies, and energetic splittings are obtained by the coupled-cluster method including singles and doubles (CCSD) and those including up to the noniterative triples [CCSD(T)] correlation methods with additional frozen core molecular orbitals corresponding to 4s and 4p orbitals. The results for well-studied states (Ag3− 1Σg+;Ag3 2B2,2A1,2Σu+;Ag3+ 1A1) are in good agreement with previous experimental results, and therefore our results for other newly studied states are expected to be reliable. The vertical detachment energies of Ag3− are obtained by the electron excitation equation-of-motion coupled-cluster (EE-EOM-CCSD) method and the average deviation from the experimental results is small without any scaling correction of the obtained values. The effect of the f-functions in the basis sets and the noniterative triples in the CCSD(T) method is discussed; the bond lengths are reduced significantly and the vertical detachment energies and ionization potentials are in much better agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call