Abstract

We perform density-functional calculations to investigate the effect of adsorbed water molecules on carbon nanotubes (CNTs). Noting that the H2O molecule has much wider energy gap than the CNT, we find that the charge transfer between them is negligible. We discuss that several recent publications, which claimed a substantial electron transfer from the water molecule to the CNT, have been based on incautious interpretations of the Mulliken population analysis. We suggest that the effect of humidity on nanotube devices may be attributed to various indirect effects enhanced by water vapors, rather than the carrier generations by the physisorbed H2O molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.