Abstract

We present ab initio calculations of the zero-temperature iron high- to low-spin crossover in (Mg 1 − x Fe x )SiO 3 perovskite at pressures relevant to Earth's lower mantle. Equations of state are fit for a range of compositions and used to predict the Fe spin transition pressure and associated changes in volume and bulk modulus. We predict a dramatic decrease in transition pressure as Fe concentration increases. This trend is contrary to that seen in ferropericlase, and suggests the energetics for spin crossover is highly dependent on the structural environment of Fe. Both Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA) exchange-correlation methods are used, and both methods reproduce the same compositional trends. However, GGA gives a significantly higher transition pressure than LDA. The spin transition is made easier by the decreasing spin-flip energy with pressure but is also driven by the change in volume from high to low spin. Volume trends show that high-spin Fe 2+ is larger than Mg 2+ even under pressure, but low-spin Fe 2+ is smaller at ambient conditions and approximately the same size as Mg 2+ under high pressure, indicating that low-spin Fe 2+ is less compressible than high-spin Fe 2+. We find large changes between high- and low-spin in the slope of volume with Fe concentration. Although these changes are small in absolute magnitude for small Fe content, they are still important when measured per Fe and could be relevant for calculating partitioning coefficients in the lower mantle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.