Abstract

Free energies of activation for rotation about the amide C–N bond in X–C(O)N(CH3)2 (X=H, F, Cl and Br) were calculated at the MP2(fc)/6-31+G*//6-31G* and MP2(fc)/6-311++G**//6-311++G** levels and compared with NMR gas-phase data. The results of calculations indicate that the repulsion between X and methyl group in ground state and the repulsion between X or oxygen and nitrogen lone pair in transition states (TS) are largely responsible for the difference in the free energies of the studied amides. For X=H (DMF), the anti TS is more stable; for the cases X=Cl, Br, the syn TS is more stable, while for the case X=F the two transition states are energetically almost equivalent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.