Abstract

The experimentally observed anomalous compositional dependence of the lattice constant of Fe–Al crystals has been theoretically investigated employing density functional theory (DFT) within the generalized gradient approximation (GGA). The formation energies, equilibrium volumes and magnetic states have been determined for a dense set of different aluminium concentrations and a large variety of atomic configurations. The spin-polarized calculations for Fe-rich compounds reproduce very well the anomalous lattice-constant behavior in contrast to both the nonmagnetic and fixed-spin-moment calculations that result in nearly linear trends without any anomaly. We thus identify the change in magnetism of iron atoms as caused by an increasing number of Al atoms in the first coordination spheres to be the decisive driving force of the anomalous behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.