Abstract
Since its discovery in 2004, graphene has attracted the intention of several researchers in the world because of its fascinating electronic and mechanical properties. Various theoretical and experimental works have been devoted to this material. In this paper, we used a full-potential linearized augmented plane-wave (FP-LAPW) method to investigate the structural, electronic, and mechanical properties of graphene in hexagonal structure within local density and generalized gradient approximations (LDA and GGA). Our results are found in good agreement with other theoretical and experimental contributions. Using a modified Becke–Johnsone GGA approximation, we have also confirmed that graphene is a zero-gap semiconductor with the presence of a Dirac cone. In our contribution, we have also calculated the elastic constants, the Young’s modulus and Poisson’s ratio of graphene that are found in good agreement with the results published in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.