Abstract

ABSTRACTWe report the electronic and structural properties of silicon doped carbon nanotubes using first principles calculations based on the density-functional theory. In the doped metallic nanotube a resonant state appears about 0.7 eV above the Fermi level and for the semiconductor tube the Si introduces an empty level at approximately 0.6 eV above the top of the valence band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.