Abstract

The potential use of ZrC for nuclear applications in irradiated environments makes it important to determine the structure and energetics of its point defects. In this paper the structures and energies of potential vacancy and interstitial point defects are examined by means of ab initio calculations. It is shown that C vacancies are easily formed and that their ab initio energetics are consistent with thermodynamic models of phase stability of the off-stoichiometric ZrCx (x<1) material. C interstitials are shown to be the most stable interstitial defect and form a C–C–C trimer along the ⟨101⟩ direction. C vacancies and interstitials are found to be dramatically more stable than antisite defects or Zr vacancies or interstitials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.