Abstract

Multi-crystalline silicon is widely used for producing low-cost and high-efficiency solar cells. During crystal growth and device fabrication, silicon solar cells contain grain boundaries (GBs) which are preferential segregation sites for atomic impurities such as oxygen atoms. GBs can induce charge carriers recombination significantly reducing carrier lifetimes and therefore they can be detrimental for Si device performance. We studied the correlation between structural, energetic and electronic properties of Σ3{111} Si GB in the presence of vacancies, strain and multiple O segregation. The study of the structural and energetic properties of GBs in the presence of strain and vacancies gives an accurate description of the complex mechanisms that control the segregation of oxygen atoms. We analysed tensile and compressive strain and we obtained that local tensile strain around O impurities is very effective for segregation. We also studied the role of multiple O impurities in the presence of Si vacancies finding that the segregation is favorite for those structures which have restored tetrahedral covalent bonds. The presence of vacancies attract atomic impurities in order to restore the electronic stability: the interstitial impurity becomes substitutional. This analysis was the starting point to correlate the change of the electronic properties in Σ3{111} Si GBs with O impurities in the presence of strain and vacancies. For each structure we analysed the density of states and its projection on atoms and states, the band gaps, the segregation energy and their correlation in order to characterise the nature of new energy levels. Actually, knowing the origin of defined electronic states would allow the optimization of materials in order to reduce non radiative electron-hole recombination avoiding charge and energy losses and therefore improving solar cell efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.