Abstract

A new potential approximation known as modified Becke–Johnson (mBJ) based on density functional theory method is applied to compute electronic and optical properties of BaPaO3 and BaUO3 compounds. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of second cation. Results reveal (Γ–Γ) direct bandgap semi-conductive nature. The band gap dependent optical properties such as complex dielectric function ε(ω), optical conductivity σ(ω), refractive index n(ω), reflectivity R(ω), and effective number of electrons (neff) via sum rules are reported for the first time. Prominent variation of optical responses suggests that BaPaO3 and BaUO3 are applicant materials for micro as well as nano-electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.