Abstract

Ab initio calculations based on the density functional theory have been performed to investigate the migrations of hydrogen (H) and helium (He) atoms in β-phase scandium (Sc), yttrium (Y), and erbium (Er) hydrides with three different ratios of H to metal. The results show that the migration mechanisms of H and He atoms mainly depend on the crystal structures of hydrides, but their energy barriers are affected by the host-lattice in metal hydrides. The formation energies of octahedral-occupancy H (Hoct) and tetrahedral vacancy (Vtet) pairs are almost the same (about 1.2 eV). It is of interest to note that the migration barriers of H increase with increasing host-lattice atomic number. In addition, the results show that the favorable migration mechanism of He depends slightly on the Vtet in the Sc hydride, but strongly on that in the Y and Er hydrides, which may account for different behaviours of initial He release from ScT2 and ErT2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.