Abstract

The ground states of MH2, HMHe+ and MHe2(2+) (M = Mg, Ca) have been investigated using relativistically-corrected CCSD(T), IC-MRCI and IC-MRCI+Q, in conjunction with ANO-RCC (Mg, Ca) and aug-cc-pVQZ (H, He) basis sets. The ground states of all magnesium species are predicted to be linear, in agreement with predicted trends. Conversely, HCaHe+ and CaHe2(2+) were determined to be quasi-linear species, with linear-inversion barriers of ca. 115 and 3 cm(-1), respectively. For CaH2, a stationary point on the molecular potential energy surface corresponding to a non-linear equilibrium structure was not observed. Trends in bonding, dissociative potential well-depths and spectroscopic constants for these species have been considered with regards to isoelectronic and isovalent reasoning. These trends are consistent with helium and hydrogen forming electrostatic and covalent bonds with the metal ion, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.