Abstract

We report quantum chemical calculations providing the exchange coupling constants of the V[TCNE]2 model system, describing the amorphous room temperature molecular magnet V[TCNE] x (TCNE = tetracyanoethylene, x ~ 2). The geometry is optimized for the ideal lattice using density functional theory (DFT) calculations with periodic boundary conditions. Broken-symmetry DFT calculations indicate antiparallel spin alignment resulting in ferrimagnetic ordering, but heavily overestimate the value of the exchange coupling. Better estimates of the exchange coupling parameters between the V(II) ion and the [TCNE]− anionic radical are obtained by means of multiconfigurational calculations performed on smaller molecular models cut from the optimized crystal lattice. Complete active space self-consistent field and multireference second-order perturbation theory calculations provide the sign and the strength of the nearest-neighbor as well as next-nearest-neighbor interactions along all three crystallographic directions. We are able to explain also intuitively the mechanism for antiferromagnetic spin coupling in terms of the superexchange pathways, discussing the role of the main four types of contributions to superexchange. Moreover, we clarify the influence of the transition metal ion on the strength of the exchange interaction and on the critical temperature for long-range ferrimagnetic ordering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call