Abstract

AbstractThis work presents an understanding of strain-thermal conductivity correlation in a metal (Au), in a semiconductor (Si), and in a ceramic (SiC) using ab initio density functional theory and utilizing a modified nonequilibrium Green’s function (NEGF) approach. Separately, electronic and phononic contributions to thermal conductivity values are calculated as a function of applied tensile strain and temperature. Analyses show that electron thermal conductivity shows a significant decrease with increase in Fermi gap (metal to semiconductor to ceramic). The electronic thermal conduction has less than 5% contribution to overall thermal conductivity in the case of Si and SiC with the value being of the same order as phononic thermal conductivity in the case of Au. Phonons are dominant carriers of heat transport in Si and SiC, with such contribution reducing with increase in temperature and increase in strain. Similar reduction is observed in the case of electronic thermal conduction in Si and SiC. In the...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call