Abstract

The four-stage mechanism of reaction of the rhodium trihydride complex [(triphos)RhH3] (triphos=1,1,1-tris(diphenylphosphanylmethyl)ethane) with the white phosphorus molecule resulting in the phosphane and the cyclo-P3 complex [(triphos)M(η3-P3] is analyzed on the basis of ab initio calculations of reactants, products, and intermediate complexes of reaction. It is shown that generation of the transient complex [(triphos)RhH(η1:η1-P4)] followed by intramolecular hydrogen atom migration from the metal to one of the phosphorus atoms is the energetically favourable process. Calculations also show that P4 molecule is activated by coordination to the above complex: the metal-bonded P-P edge is broken, and the tetrahedron P4 is opened to form the butterfly geometry. This activation is realized mainly due to the one-orbital back donation of 4d-electron density from the atom of Rh to the unoccupied antibonding triple degenerate t1*-MO of P4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.