Abstract
Graphyne (GYN) has received immense attention in gas adsorption applications due to its large surface area. The adsorption of toxic ammonia and nitrogen halides gaseous molecules on graphyne has been theoretically studied at ωB97XD/6-31 + G(d, p) level of DFT. The counterpoise corrected interaction energies of NH3, NF3, NCl3, and NBr3 molecules with GYN are - 4.73, - 2.27, - 5.22, and - 7.19kcalmol-1, respectively. Symmetry-adapted perturbation theory (SAPT0) and noncovalent interaction index (NCI) reveal that the noncovalent interaction between analytes and GYN is dominated by dispersion forces. The significant change in electronic behavior, i.e., energies of HOMO and LUMO orbitals and NBO charge transfer correspond to the pronounced sensitivity of GYN towards considered analytes, especially NBr3. Finally, TD-DFT calculation reveals a decrease in electronic transition energies and shifting of adsorption to a longer wavelength. The recovery time for NX3@GYN is observed in nanoseconds, which is many orders of magnitude smaller than the reported systems. The recovery time is further decreased with increasing temperature, indicating that the GYN benefits from a short recovery time as a chemical sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.