Abstract

First-principles studies of the linear and nonlinear optical properties for YAl3(BO3)4 (YAB) are presented. Based upon the electronic band structure, the optical refractive indices, birefringence, and second harmonic generation (SHG) coefficients of YAB are calculated, which are in good agreement with experimental values. In addition, the SHG-weighted electron density analysis and the real-space atom-cutting method are adopted to elucidate the origin of the linear and nonlinear optical effects in YAB. The results show that the anionic (BO3) groups have dominant contributions to the birefringence. The contribution of the Al cations to the optical effects is negligibly small. However, the Y cations bond to the neighbor O anions and form the deformed (YO6) octahedra, which results in the large SHG effects in YAB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call