Abstract

The present work systematically investigates the total energy, phonon spectra, and thermodynamic properties of different polymorphs of pure Fe, i.e., FCC, BCC, and HCP, with the ab initio approach, considering various magnetic configurations. In general, the calculated energy vs. volume curves and phonon spectra agree well with previous calculations and the experimental data. In addition, their thermodynamic properties are estimated by the quasiharmonic approximation (QHA). Specifically, a superposition approach based on the latest Zentropy theory was utilized to predict magnetic transition temperatures and thermodynamic properties of pure Fe. With the ensemble of the partition function considering the multiplicity of each magnetic microstate, the current work successfully reproduced the Curie/Néel temperature and the Schottky anomaly of heat capacity in FCC, BCC, and HCP Fe purely based on the ab initio input, which exhibits good agreement with the experimental data and CALPHAD modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.