Abstract

The phase transition, thermoelastic, lattice dynamic, and thermodynamic properties of the cubic metallic phase AlH3 were obtained within the density-function perturbation theory. The calculated elastic modulus and phonon dispersion curves under various pressures at 0 K indicate the cubic phase is both mechanically and dynamically stable above 73 GPa. The superconducting transition temperature Tc was calculated using the Allen-Dynes modification of the McMillan formula based on BCS theory. The calculations show that Tc for the cubic phase AlH3 is 8.5 K (μ*=0.1) at the onset of this phase (73 GPa), while decreases to 5.7 K at 80 GPa and almost disappears at 110 GPa, consisting with experimental phenomenon that there was no superconducting transition observed down to 4 K over a wide pressure range 110–164 GPa. It is found that the soft phonon mode for branch 1, namely, the lowest acoustic mode, plays a crucial role in elevating the total EPC parameter λ of cubic AlH3. And the evolution of Tc with pressure follows the corresponding change of this soft mode, i.e. this mode is responsible for the disappearance of Tc in experiments. Meanwhile, the softening of this lowest acoustic mode originates from the electronic momentum transfer from M to R point. This phenomenon provides an important insight into why drastic changes in the diffraction pattern were observed in the pressure range of 63–73 GPa in Goncharenko's experiments. Specifically, once finite electronic temperature effects are included, we find that dynamical instabilities can be removed in the phonon dispersion for P≥63 GPa, rendering the metastability of this phase in the range of 63–73 GPa, and Tc (15.4 K) becomes remarkably high under the lowest possible pressure (63 GPa) compared with that of under 73 GPa (8.5 K). Our calculations open the possibility that finite temperature may allow cubic AlH3 to be dynamically stabilized even for pressures below 73 GPa. It is reasonable to deduced that if special techniques, such as rapid decompression, quenching, and annealing, are implemented in experiments, higher Tc can be observed in hydrides or hydrogen-rich compounds under much lower pressure than ever before.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call