Abstract

Two-photon absorption of a series of donor-acceptor trans-stilbene derivatives is studied by means of density functional theory applied to second-order response function. Several important issues in modeling are highlighted which must be addressed for a reliable reproduction of the experimental results. It is evident that the correct order of magnitude of calculated two-photon absorption cross sections can only be obtained if proper account is taken of vibrational broadening of the absorption profiles. A comparison of the theoretical results with the experimental ones indicates that the computed two-photon absorption cross sections are in rough agreement with our previous report, although the observed systematic increase of the cross sections with the electron acceptor strength is not well reproduced. It is suggested that this disagreement may be due not only to the deficiencies of the computations but also to a variety of factors contributing to the experimental value of the effective two-photon absorption cross section, which are not taken into account in the ab initio calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call