Abstract
AbstractAb initio self‐consistent‐field calculations are reported for electronic states of beryllium clusters comprised of 93, 105, 111, and 123 atoms. The respective clusters correspond to coordination shells 12‐15 of a central Be atom with internuclear separations derived from the lattice constants of the bulk metal. Ab initio effective core potentials have been employed to replace the 1 s electrons, thereby reducing the complexity of the calculations. In addition, use of the full D3h point group symmetry of the clusters results in a substantial reduction of the numbers of two‐electron integrals that must be computed and processed. Binding energies, orbital energies, electric field gradient, nuclear‐electrostatic potential, diamagnetic shielding constant, second moments, and Mulliken populations are calculated for selected electronic states. Calculated binding energies when compared among the different clusters as well as to smaller and larger fragments from earlier studies provide evidence for the onset of convergence to the Hartree–Fock limit of the bulk. Lowest‐state ionization potentials are consistently above and agree to within 14% of the experimental workfunction. The net charge on the central beryllium atom decreases toward zero. The variability of observed bulklike behavior for the different properties indicates that the transition between cluster and bulklike behavior is not sharp and depends on the quantity of interest. © 1995 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.