Abstract

The aromatic excimers of benzene, naphthalene, anthracene, pyrene, and perylene are systematically investigated using the multiconfiguration quasi-degenerate perturbation theory (MCQDPT) method, which is one of high-level ab initio quantum chemical methods. The reference configuration space for MCQDPT is carefully designed for an appropriate description of the target electronic state with a tractable computational cost. The dimers with eclipsed parallel arrangement are investigated. The basis set dependence of the selected spectroscopic parameters is examined for the benzene and naphthalene dimers, and that of the excimer binding energy is found to be significant. In contrast, the equilibrium intermolecular distance and excimer fluorescence energy are less sensitive to the size of the basis sets used, and they agree with the corresponding experimental values, even with a nonextensive basis set size. The calculated spectroscopic parameters for anthracene, pyrene, and perylene dimers are also in good agreement with the experimental results. The electronic properties of the excimers are discussed in relation to those of the corresponding monomers. The wave functions of the excimers are analyzed in detail to clarify the origin of the attractive nature between the two monomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.