Abstract

This paper reports the first quantitative ab initio prediction of the disproportionation/combination ratio of alkyl+alkyl reactions using CH3+C2H5 as an example. The reaction has been investigated by the modified Gaussian-2 method with variational transition state or Rice-Ramsperger-Kassel-Marcus calculations for several channels producing (1) CH4+CH2CH2, (2) C3H8, (3) CH4CH3CH, (4) H2+CH3CHCH2, (5) H2+CH3CCH3, and (6) C2H6+CH2 by H-abstraction and association/decomposition mechanisms through singlet and triplet potential energy paths. Significantly, the disproportionation reaction (1) producing CH4+C2H4 was found to occur primarily by the lowest energy path via a loose hydrogen-bonding singlet molecular complex, H3CHC2H4, with a 3.5 kcal/mol binding energy and a small decomposition barrier (1.9 kcal/mol), instead of a direct H-abstraction process. Bimolecular reaction rate constants for the formation of the above products have been calculated in the temperature range 300-3000 K. At 1 atm, formation of C3H8 is dominant below 1200 K. Over 1200 K, the disproportionation reaction becomes competitive. The sum of products (3)-(6) accounts for less than 0.3% below 1500 K and it reaches around 1%-4% above 2000 K. The predicted rate constant for the disproportionation reaction with multiple reflections above the complex well, k1=5.04 x T(0.41) exp(429/T) at 200-600 K and k1=1.96 x 10(-20) T(2.45) exp(1470/T) cm3 molecule(-1) s(-1) at 600-3000 K, agrees closely with experimental values. Similarly, the predicted high-pressure rate constants for the combination reaction forming C3H8 and its reverse dissociation reaction in the temperature range 300-3000 K, k2(infinity)=2.41 x 10(-10) T(-0.34) exp(259/T) cm3 molecule(-1) s(-1) and k(-2)(infinity)=8.89 x 10(22) T(-1.67)exp(-46 037/T) s(-1), respectively, are also in good agreement with available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.