Abstract

First principles periodic density functional theory (DFT) has been applied to simulate the electrochemical interface between water and various (111) metal surfaces. The chemistry of water at these electrified interfaces is simulated and the parameters relevant to the macroscopic behavior of the interface, such as the capacitance and the potential of zero charge (PZC) are examined. In addition, we examine the influence of co-adsorbed CO upon the equilibrium potential for the activation of water over Pt(111). We find that for copper and platinum there is a potential window over which water is inert, but on Ni(111) water is always found in some dissociated form (as adsorbed OH* or H*, depending on the applied potential). Furthermore, the relaxation of water molecules via the flip/flop rotation is an important contribution to the interfacial capacitance. Our calculations for the coadsorbed H2O/CO system indicate that the adsorption of CO affects the binding energy of OH, such that water activation occurs at a higher equilibrium potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.