Abstract

Athermal elasticity for some ceramic materials (α-Al2O3, SiC (α and β phases), TiO2 (rutile and anatase), hexagonal AlN and TiB2, cubic BN and CaF2, and monoclinic ZrO2) have been investigated via density functional theory. Energy-volume equation-of-state computations to obtain the zero pressure equilibrium volume and bulk modulus as well as computations of the full elastic constant tensor of these ceramics at the experimental zero pressure volume have been performed. The present results for the single crystal elasticity are in good agreement with experiments both for the aggregate properties (bulk and shear modulus) and the elastic anisotropy. In contrast, a considerable discrepancy for the zero pressure bulk modulus of some ceramics evaluated from the energy-volume fit to the computational zero pressure volume has been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.