Abstract

The ab initio no-core shell model (NCSM) is extended to include a realistic three-body interaction in calculations for p-shell nuclei. They present results of first applications using the Argonne V8' nucleon-nucleon (NN) potential and the Tucson-Melbourne TM'(99) three-nucleon interaction (TNI). In addition to increase of binding energy, they observe a trend toward level-ordering and level-spacing improvement in comparison to experiment. With the TNI they obtain a correct ground-state spin for {sup 10}B contrary to calculations with NN potentials only. They also investigate neutrino-{sup 12}C exclusive cross sections and muon capture on {sup 12}C. They show that realistic nucleon-nucleon interactions underpredict the experimental cross sections by a factor of two or more. By including the TNI a much better agreement with experiment is achieved along with an encouraging trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.