Abstract

The nonadiabatic photoinduced dynamics occurring in the coupled 1(1)A(2) and 1(1)B(1) excited states of SO(2) is investigated using ab initio quantum dynamical methods. To this end, large scale calculations of the potential energy surfaces have been carried out at the multireference configuration interaction level. All vibrational degrees of freedom of the molecule are considered in the potential energy surface calculations and the quantum dynamical treatment. To deal with the symmetry-allowed conical intersection which occurs between the potential energy surfaces, we use the diabatic picture in the framework of regularized diabatic states. Wave-packet propagation on the coupled surfaces was performed and allowed to reproduce with good accuracy the complex absorption band observed experimentally in the 29,000-42,000 cm(-1) range. This provides a basis for a subsequent theoretical treatment of the high order harmonic spectra of SO(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.