Abstract

Ab inito computations of the different contributions to chemical shift variations due to intra and interstrand stacking are reported for the GC, CG, AT and TA sequences of a B DNA helix. The results obtained for the non hydrogen atoms of the GC stacks show that the chemical shift variations are mainly due to the polarization contribution, the term which decreases slowly with the intermolecular distance. Because of the weaker polarity of adenine and thymine the geometric and polarization contributions are of closer absolute magnitude for the non hydrogen atoms of the intrastrand stacks but the polarization term is the determining contribution in the corresponding interstrand stacks. For the protons which undergo smaller shifts due to the polarization (or electric field effects) the role of the geometric contribution is more important and is even the leading one for the hydrogens of cytosine and thymine in the case of intrastrand stacking. The charge transfer plus exchange term has a non negligeable value for a limited number of cases corresponding to the shortest intermolecular interatomic distances. These results are discussed in relation with the qualitative differences observed between the proton and carbon spectra of dinucleotides and B-DNA duplexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.