Abstract

Ab initio molecular orbital calculation was performed for uranyl (VI) monomer and dimer complexes with some water molecules and/or hydroxide ions. The Raman active frequencies were calculated for each complex after structural optimization in vacuum state, and investigated the molecular structure and the charge distribution. For uranyl monomer, the calculated Raman frequencies for uranyl with 5 or 6 water molecules show good agreement with experimental Raman frequencies for uranyl hydrates. On the contrary, the calculation underestimates the Raman frequency in case of hydroxide ions in uranyl complex. The calculation models for uranyl dimer were made from [UO2(H2O)5]2+, then the hydroxide ions bridging model, [(UO2)2(OH)2(H2O)6]2+, is more stable than water molecules bridging, [(UO2)2(H2O)8]4+, and the theoretical Raman frequency and uranyl bond lengths have the good coincidence with those of experiments. The calculated uranyl bond length of dimer is slightly longer than that of monomer. Also, the charge of oxygen atom in uranyl shows larger change than that of uranium atom between dimer and monomer. And this charge distribution is mostly influenced by the charge donation of ligands. If only same ligands are surrounding, the number of ligands influenced this charge distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.