Abstract

The reaction between triplet methylene and nitric oxide, producing the formaldiminoxy (CH2NO) radical, and the subsequent decomposition and isomerization reactions of CH2NO have been studied using ab␣initio quantum chemical techniques that include the Gaussian-2 (G2), CASSCF and CASPT2 methods. Stationary points on the potential energy surfaces were located at MP2/6-31G(d) and CASSCF/cc-pVDZ levels of theory, while the electronic energies were determined using G2, G2(MP2), QCISD(T)/cc-pVTZ, RCCSD(T)/cc-pVTZ and CASPT2/cc-pVTZ approaches. G2 is believed to be reliable at equilibrium geometries, but the determination of certain transition state geometries and energies requires a MCSCF-based approach. The calculations suggest that CH2NO (2A′) forms in a barrierless reaction and could readily decompose to H+HCNO. A subsequent abstraction reaction then results in H2+CNO. No molecular elimination channel was found. An alternative pathway is the formation of CH2ON, which readily isomerizes to CH2NO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.