Abstract

We perform extensive density functional theory calculations to determine the stability and elementary properties of 4249 previously unexplored monolayer crystals. The monolayers comprise the most stable subset (energy within 0.1 eV/atom of the convex hull) of a larger portfolio of two-dimensional (2D) materials recently discovered using a deep generative model and systematic lattice decoration schemes. The relaxed 2D structures are run through the basic property workflow of the Computational 2D Materials Database (C2DB) to evaluate the dynamical stability and obtain the stiffness tensor, piezoelectric tensor, deformation potentials, Born and Bader charges, electronic band structure, effective masses, plasma frequency, Fermi surface, projected density of states, magnetic moments, magnetic exchange couplings, magnetic anisotropy, topological indices, optical- and infrared polarisability. We provide statistical overviews of the property data and highlight a few specific examples of interesting materials. Our work exposes previously unknown parts of the 2D chemical space and provides a basis for the discovery of 2D materials with specific properties. All data is available in the C2DB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call