Abstract

Doping effects on the electronic and magnetic properties of Zn1−x (Co,Cr) x O systems are investigated within Local Spin Density Approximation and Hubbard U methods. Based on Density Functional Theory the spin-polarization band structures, density of states for investigated systems are calculated. Systematic analysis of the electronic properties shows that TM-doped ZnO has generated new energy levels in the vicinity of Fermi energy level. From first-principle calculations we obtained Cr-ZnO and Co-ZnO systems are metallic and half-metallic ferromagnetic materials, respectively. The obtained results for Cr-doped ZnO 128- and 192-atom supercell systems show magnetic properties with higher Curie temperature than room temperature. There are large local moments, ∼2.9 and ∼4.2 for Co and Cr dopants, respectively. Magnetic moments are related with two electron defects in the supercell structure and unpaired electrons of transition metal. The ferromagnetic and antiferromagnetic phases and the total energy are obtained for x = 2.08%, 3.125%, 4.16%, 6.25%, 8.3%, 12.5%, and 25% impurity concentrations for doped ZnO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call