Abstract

Hydrogen-saturated cut-outs of hexagonal boron nitride have been used to model the solid state. Model compounds have been geometry optimized by means of density functional theory, whereas chemical shift calculations have been carried out at the coupled-perturbed Hartree–Fock level of theory employing gauge-including atomic orbital (GIAO) basis sets. The reliability of results has been tested against experimental values for chemical shifts in stable molecules with similar structural elements. With increasing cluster size, viz. a vanishing influence of the saturating hydrogens on the innermost nitrogen atoms, we find a convergence of 15N chemical shifts. A classification scheme for the chemical environment of a nitrogen atom has been set up according to its bonding graph including the second coordination sphere. For a given connectivity, chemical shifts vary within a few parts per million, thus enabling us to predict a 15N-NMR chemical shift of −285 ± 5 ppm for solid α-boron nitride. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 716–725, 1998

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.