Abstract

The first ab initio potential energy surface for Kr–HCCCN was calculated using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)] with a large basis set containing bond functions. The potential has a T-shaped global minimum and a local linear minimum with the Kr atom facing the H atom. The radial discrete variables representation (DVR)/angular finite basis representation (FBR) method and the Lanczos algorithm were employed to calculate the rovibrational energy levels for three isotopomers 84Kr–HCCCN, 82Kr–HCCCN, and 86Kr–HCCCN. The spectroscopic constants for the ground and the first excited states of Kr–HCCCN were predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.