Abstract
The response of the uniform electron gas (UEG) to an external perturbation is of paramount importance for many applications. Recently, highly accurate results for the static density response function and the corresponding local field correction have been provided both for warm dense matter [2019 J. Chem. Phys. 151 194104] and strongly coupled electron liquid [2020 Phys. Rev. B 101 045129] conditions based on exact ab initio path integral Monte Carlo (PIMC) simulations. In the present work, we further complete our current description of the UEG by exploring the high energy density regime, which is relevant for, e.g. astrophysical applications and inertial confinement fusion experiments. To this end, we present extensive new PIMC results for the static density response in the range of 0.05 ≤ rs≤ 0.5 and 0.85 ≤ θ ≤ 8. These data are subsequently used to benchmark the accuracy of the widely used random phase approximation and the dielectric theory by Singwi, Tosi, Land, and Sjölander (STLS). Moreover, we compare our results to configuration PIMC data where they are available and find perfect agreement with a relative accuracy of 0.001 − 0.01%. All PIMC data are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.