Abstract

Ab initio Monte Carlo simulations have been performed to determine the equilibrium properties of liquid lithium and lithium clusters at different temperatures. First-principles density-functional methods were employed to calculate the potential-energy change for each proposed change of configuration, which was then accepted or rejected according to the Metropolis Monte Carlo scheme. The resulting structural properties are compared to data from experimental measurements and ab initio molecular dynamics simulations. It is shown that accurate structural information can be obtained with ab initio Monte Carlo simulations at computational costs comparable to ab initio molecular dynamics methods. We demonstrate that ab initio Monte Carlo simulations for the properties of fairly large condensed-matter systems at nonzero temperatures are feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call