Abstract
Ab initio molecular-orbital calculations at the HF/6-31G(d,p) level were used to investigate the hydrogen bonding between open-chain aliphatic carbonyl compounds and hydrogen fluoride. The carbonyl compounds studied are H2CO, HCOOH, HCOSH, HCOOCH3, HCONH2, HCONO2, HCOCN, HCOF, HCOCl, HCOCH3, HCOCF3, CH3COOH, CH3COSH, CH3COOCH3, CH3CONH2, CH3CONO2, CH3COCN, CH3COF, CH3COCl, CH3COCH3, and CH3COCF3. Geometry optimization and vibrational-frequency and infrared-intensity calculations at the optimized geometry were performed for isolated and hydrogen-bonded systems. The estimated energies of hydrogen-bond formation were corrected for zero-point vibrational energy and basis-set superposition error. In agreement with expectations a linear relation (R = 0.994) between the energy of hydrogen-bond formation, ΔE, and the H−F stretching frequency shift, ΔνH-F, was obtained for the systems studied. A linear dependency was also found between ΔE and the change of H−F bond length, ΔrH-F (R = 0.994). Effective bond charges of the hydrogen bond, δO···H, for the series of compounds studied were evaluated from the theoretically derived dipole-moment derivatives. A satisfactory correlation (R = 0.938) between δO···H and the energy of hydrogen bond formation, ΔE, was obtained. The attempt to explain the differences in hydrogen-bond strength, ΔE, with the variation of the carbonyl oxygen atomic charges in the isolated molecules showed that neither Mulliken nor CHELPG and MK atomic charges can be successfully used for the purpose. However, the molecular electrostatic potential at the carbonyl oxygen in the isolated molecules, ΦO, correlates in a quite satisfactory manner (R = 0.979) with the energy of hydrogen-bond formation for the entire series of compounds. This result appears quite significant in view of its importance for understanding the mechanisms of intermolecular interactions leading to hydrogen bonding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.