Abstract

Abstract Molecular orbital (MO) calculations at the HF/6-31G(d) level were carried out for the aquolithium ions, Li+(H2O)n (n = 3, 4, 5, 6, 8, 10 and 12) and the aquolithium ions interacting with the methyl sul­fonate ion (MeS-), Li+MeS-(H2O)n (n = 0, 3,4, 5, 6, 7, 8 and 10) which were, respectively, intended to be substitutes for lithium species in the solution and resin phases of ion exchange systems for lithium isotope separation. For each of the species considered, at least one optimized structure with no negative frequency was obtained, and the 7Li-to-6Li isotopic reduced partition function ratio (RPFR) was esti­mated for the optimized structure. The solvation number in the primary solvation sphere was four, both in the solution and resin phases; three waters and MeS" formed the primary solvation sphere in the res­ in phase. Additional water molecules moved off to the secondary solvation sphere. It was found that consideration on the primary solvation sphere alone was insufficient for estimations of reduced parti­tion function ratios of aquolithium ions. Although the agreement between the experimentally obtained lithium isotope fractionation and the calculated results is not satisfactory, it is pointed out that the HF/6-31 G(d) level of the theory is usable for elucidation of lithium isotope effects in aqueous ion exchange systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.